Combination of resistance genes offers better protection for wheat against powdery mildew
Kombination von Abwehrgenen schützt Weizen besser gegen Mehltau
Zurich, Switzerland
January 22, 2018
Wheat line without Pm3 alleles, infected by powdery mildew (Image: UZH)
University of Zurich​ plant researchers have tested newly developed wheat lines with improved resistance in field trials. They have demonstrated that a combination of two variations of a resistance gene provides wheat with better protection against the fungal disease.
The wheat lines arranged in a checkerboard pattern. (Wheat field in Zurich-Affoltern, ©Mario Waldburger, Agroscope)
A decent wheat harvest requires robust wheat. However, wheat crops are often infected by fungal diseases such as powdery mildew. For several years now, UZH researchers have been investigating a wheat gene that confers resistance to powdery mildew (Blumeria graminis f. sp. tritici). The gene, called the Pm3 resistance gene, exists in different variations, so called alleles. In previous studies, plant researcher Beat Keller and his team demonstrated that single Pm3 alleles are able to confer resistance against powdery mildew fungi. And yet, a single resistance gene can quickly lose its effectiveness. Thus when it comes to plant breeding, it is important to combine multiple resistance genes. This is exactly what researchers at UZH have now tested in field trials using transgenic wheat lines.
Combination of two Pm3 variations increases powdery mildew resistance
The researchers created new wheat lines by crossbreeding transgenic Pm3 lines (see box). This resulted in four new wheat lines, each containing two different Pm3 gene variations. “These four new wheat lines showed improved resistance against powdery mildew in field trials compared with their parental lines – during the field seasons 2015 to 2017,” explains Teresa Koller, lead author of the study.
No negative effects on wheat yield
Back in the laboratory, the scientists proved that the parental lines’ gene activity is added up in the newly created lines. Each Pm3 allele in the four new lines displayed the same activity as in the parental line, which results in increased overall activity, since it came from two different gene variations. “The improved resistance against powdery mildew is the result of the increased total transgene activity as well as the combination of the two Pm3 gene variations,” summarizes Teresa Koller. The high overall activity of resistance genes did not cause any negative effects for the development of the wheat or its yield.
Application in modern wheat breeding
The findings of these trials improve our general knowledge of the immune system of plants, and in particular of fungal disease resistance of wheat. Besides contributing to fundamental research in the area of plants’ immune systems, the findings can also be applied in wheat breeding. Thanks to the precise testing of Pm3 alleles, the best variations and combinations are identified and can then be used directly in traditional breeding by crossbreeding them into modern wheat varieties.
Literature:
Teresa Koller, Susanne Brunner, Gerhard Herren, Severine Hurni, and Beat Keller. Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field. Theoretical and Applied Genetics. January 11, 2018. DOI: 10.1007/s00122-017-3043-9
Function of the Pm3 resistance gene
The Pm3 gene is the “blueprint” for a protein that can receive signals in the plant cell, i.e. a receptor. It is able to recognize avirulent proteins, or AvrPm3 for short, of the powdery mildew fungus. The receptor triggers the plant cell’s death as soon as the harmful fungus attempts to inject the AvrPm3 protein into the plant cell. By killing off the attacked cell, the rest of the plant is protected against the fungus. Different Pm3 gene variations, or Pm3 alleles, encode different variations of the receptor. These receptor variations are able to recognize different AvrPm3 proteins of the powdery mildew fungus.
Previous studies
Prof. Beat Keller and his team have identified various Pm3 gene variations in powdery mildew-resistant wheat varieties from across the world. To assess the function and effectiveness of the different Pm3 gene variations, they were genetically engineered into the genome of the spring wheat variety Bobwhite. Bobwhite wheat lacks its own functioning Pm3 gene and is very susceptible to powdery mildew. The transgenic Bobwhite wheat lines, each containing a single Pm3 gene variation, were assessed in field trials as part of the National Research Program NFP59 between 2008 and 2010. The findings of these trials were published in 2011 and 2012.
Kombination von Abwehrgenen schützt Weizen besser gegen Mehltau
UZH-Pflanzenforscher haben getestet, wie sich neu entwickelte Weizenlinien mit einer verbesserten Resistenz im Freiland verhalten. Sie weisen nach, dass die Kombination von zwei Varianten eines Resistenzgens den Weizen besser gegen die Pilzkrankheit schützt.
Für eine gute Weizenernte braucht es robusten Weizen. Doch dieser wird häufig von Pilzkrankheiten wie Mehltau befallen. Seit mehreren Jahren beschäftigen sich UZH-Wissenschaftler mit einem Gen aus Weizen, das Resistenz gegen den Erreger von Mehltau (Blumeria graminis f. sp. tritici) vermittelt. Dieses Resistenzgen mit der Bezeichnung Pm3 kommt in verschiedenen Varianten, sogenannten Allelen vor. In vorangehenden Studien bewies das Team um den Pflanzenbiologen Beat Keller, dass Pm3 alleine und sehr effizient Mehltauresistenz vermitteln kann. Ein einzelnes Resistenzgen kann aber schnell seine Wirksamkeit verlieren. Deshalb ist es in der Pflanzenzüchtung wichtig, mehrere Resistenzgene zu kombinieren. Genau dies haben die UZH-Forschenden mit transgenen Weizenlinien in Feldversuchen getestet.
Kombination zweier Genvarianten erhöht Mehltauresistenz
Die Forschenden erzeugten neue Weizenlinien, indem sie jeweils zwei transgene Pm3-Weizenlinien (siehe Box) kreuzten. Durch die Kreuzungen entstanden vier neue Weizenlinien, die jeweils zwei verschiedene Pm3-Genvarianten enthielten. «Tatsächlich zeigten die vier neuen Weizenlinien im Feld eine verbesserte Mehltausresistenz gegenüber ihren Elternlinien – während der Versuchsjahre von 2015 bis 2017», erklärt Studienerstautorin Teresa Koller.
Keine negativen Auswirkungen auf Weizenertrag
Im Labor wiesen die Wissenschaftler nach, dass sich die Genaktivität der Elternlinien in den Nachkommen summiert. Die einzelnen Pm3-Genvarianten in den vier neuen Linien zeigen die gleiche Aktivität wie in den Elternlinien, wodurch sich die gesamthafte Resistenz, da von zwei Genvarianten stammend, in den Nachkommen erhöht. «Die verbesserte Mehltauresistenz ist sowohl auf die erhöhte Gesamtaktivität als auch auf die Kombination der zwei Pm3-Genvarianten zurückzuführen», fasst Teresa Koller zusammen. Die hohe Gesamtaktivität der Resistenzgene hatte keine negativen Auswirkungen auf die Entwicklung des Weizens sowie dessen Ertrag.
Für Züchtung bei modernen Weizensorten nutzbar
Die Resultate dieser Versuche dienen in erster Linie dem verbesserten Verständnis des Immunsystems der Pflanzen generell, und im Speziellen der Pilzkrankheitsresistenz des wichtigen Grundnahrungsmittels Weizen. Neben dem Beitrag zur Grundlagenforschung am Pflanzenimmunsystem können die Resultate auch in der Weizenzüchtung verwendet werden. Durch das präzise Testen der Pm3-Genvarianten werden die besten Varianten identifiziert und können direkt in der klassischen Züchtung verwendet werden, indem sie in moderne Weizensorten eingekreuzt werden.
Literatur:
Teresa Koller, Susanne Brunner, Gerhard Herren, Severine Hurni, and Beat Keller. Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field. Theoretical and Applied Genetics. January 11, 2018. DOI: 10.1007/s00122-017-3043-9
Funktion Resistenzgen Pm3
Das Gen Pm3 ist die «Bauanleitung» für ein Protein, das Signale in der Pflanzenzelle wahrnehmen kann, ein Rezeptor. Dieser kann sogenannte Avirulenzproteine, kurz AvrPm3, des Mehltaus erkennen. Der Rezeptor löst sofort den Zelltod der Pflanzenzelle aus, wenn der krankmachende Pilz versucht, das Protein AvrPm3 ins Pflanzenzellinnere zu schleusen. Durch den Tod der attackierten Zellen ist der Rest der Pflanze vor dem Pilz geschützt. Verschiedene Pm3-Genvarianten, sogenannte Pm3-Allele, kodieren für verschiedene Varianten des Rezeptors. Diese Rezeptorvarianten können verschiedene AvrPm3-Proteine des Mehltaus erkennen.
Frühere Studien
Die Gruppe von Prof. Beat Keller identifizierte verschiedene Pm3-Genvarianten in mehltauresistenten Weizensorten aus verschiedenen Weltregionen. Zur Überprüfung der Funktion und Wirksamkeit dieser verschiedenen Pm3-Genvarianten wurden sie mittels gentechnischer Methoden ins Genom der Sommerweizensorte «Bobwhite» eingebaut. «Bobwhite» besitzt selbst kein funktionstüchtiges Pm3-Gen und ist sehr anfällig auf Mehltau. Die transgenen Bobwhite-Weizenlinien, die jeweils eine einzelne Pm3-Genvariante enthalten, wurden im Rahmen des Nationalen Forschungsprogramms NFP59 in den Jahren 2008 bis 2010 in Feldversuchen untersucht. Die Resultate dieser Versuche wurden 2011 und 2012 veröffentlicht.
More news from: University of Zurich
Website: http://www.uzh.ch/index.html Published: January 22, 2018 |