home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

The petunia points the way to better harvests
Petunie weist den Weg zu besseren Ernten


Zurich, Switzerland
March 7, 2012

Most plants live in symbiosis with soil fungi and are supplied with water and nutrients as a result. Based on the petunia, plant biologists at the University of Zurich have now discovered that a special transport protein is required to establish this symbiotic relationship. The targeted control of this protein could lead to greater harvests.

About 80 percent of all terrestrial plants enter into a symbiotic relationship with fungi living in the soil. The fungi provide the plant with water, important nutrients like phosphate and nitrate, and certain trace elements like zinc; the plant, on the other hand, supplies the fungus with carbohydrates. It is assumed that plants were only able to migrate onto land 400 million years ago thanks to this symbiosis.

The formation of this symbiosis is a strictly regulated process that the plant activates in low nutrient levels. The roots release the hormone strigolactone, which is detected by the fungi. The fungal hyphae grow towards the roots, penetrate the epidermis and isolated passage cells, and enter the root cortex. There, the fungal hyphae form tiny branch-like networks, which resemble little trees (arbusculum) and gave the symbiotic relationship its name: vesicular-arbuscular mycorrhizal symbiosis.

Until about five years ago, the hormone strigolactone was known to induce and entice parasitic plant seeds in the soil to germinate. At that stage, no-one understood why plants produced this substance, which is harmful to them. Only when the new role of strigolactone in mycorrhiza formation was discovered did it become clear that the attraction of the parasites was a harmful side effect of the symbiosis.

How do strigolactones get into the soil?
Exactly how strigolactones are released into the soil from the roots and how the fungi find the specialized entry points in the roots was not known until now. The research group headed by Professor Enrico Martinoia from the University of Zurich has now found the answers to these questions in collaboration with Professor Harro Bouwmeester’s team from Wageningen in the Netherlands. “Based on the model plant the petunia, we were able to demonstrate that the protein PhPDR1 transports strigolactones,” explains Professor Martinoia. The protein belongs to the ABC-transporter family found in simple organisms like bacteria, but also in humans.

The researchers observed that PhPDR1 is expressed more highly in a low nutrient content in order to attract more symbiotic fungi, which then supply more nutrients. But there are also plants like the model plant Arabidopsis (mouse-ear cress) that do not form any mycorrhiza. If the researchers added PhPDR1, however, the Arabidopsis roots transported strigolactones again.

Improvements in yield and weed control
“Our results will help to improve the mycorrhization of plants in soils where mycorrhization is delayed,” Professor Martinoia is convinced. “Mycorrhization can thus be triggered where it is inhibited due to dryness or flooding of the soils.” This would enable the plants to be nourished more effectively and achieve a greater harvest. Moreover, thanks to the discovery of the strigolactone transporter the secretion of strigolactone into the soil can be halted, which prevents parasitic plants that use up the host plants’ resources from being attracted. “This is especially important for regions in Africa, where the parasitic weed Striga and other parasitic plants regularly destroy over 60 percent of harvests,” says Martinoia.

Literature:
Tobias Kretzschmar, Wouter Kohlen, Joelle Sasse, Lorenzo Borghi, Markus Schlegel, Julien B. Bachelier, Didier Reinhardt, Ralph Bours, Harro J. Bouwmeester and Enrico Martinoia. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature, doi:10.1038/nature10873.

 


Petunie weist den Weg zu besseren Ernten

Die meisten Pflanzen leben in einer Symbiose mit Bodenpilzen und werden so mit Wasser und Nährstoffen versorgt. Anhand der Petunie haben Pflanzenbiologen der Universität Zürich jetzt herausgefunden, dass es ein spezielles Transportprotein braucht, um diese Lebensgemeinschaft zu bilden. Eine gezielte Steuerung dieses Proteins könnte zu höheren Ernten führen.

Etwa 80 Prozent aller Landpflanzen gehen eine Symbiose mit im Boden lebenden Pilzen ein. Die Pilze liefern an die Pflanze Wasser, wichtige Nährstoffe wie Phosphat und Nitrat, und einige Spurenelemente wie Zink. Die Pflanze wiederum versorgt den Pilz mit Kohlenhydraten. Man nimmt an, dass die Pflanzen vor 400 Millionen Jahren nur dank dieser Symbiose vom Wasser ans Land migrieren konnten.

Die Bildung dieser Symbiose ist ein streng regulierter Prozess, den die Pflanze bei tiefem Nährstoffgehalt auslöst. Die Wurzeln geben das Hormon Strigolakton ab, das von den Pilzen bemerkt wird. Die Pilzhyphen wachsen auf die Wurzeln zu, durchqueren die Epidermis und vereinzelte Durchlasszellen und dringen in den Wurzelkortex ein. Dort bilden die Pilzhyphen fein verästelte Netzwerke, die wie kleine Bäume (arbusculum) aussehen und der Symbiose ihren Namen gegeben: vesikulär-arbuskuläre Mykorrhiza.

Das Hormon Strigolakton war bis vor etwa fünf Jahren bekannt dafür, dass es parasitische Pflanzensamen im Boden zum Keimen bringt und anlockt. Niemand hat zu diesem Zeitpunkt verstanden, weshalb Pflanzen diese Substanz produzieren, das schädlich für sie ist. Erst als die neue Funktion von Strigolakton in der Mykorrhiza-Bildung entdeckt wurde, wurde klar, dass das Anlocken der Parasiten ein schädlicher Nebeneffekt der Symbiose ist.

Wie kommen Strigolaktone in den Boden?
Wie genau Strigolaktone von den Wurzeln in den Boden abgegeben werden und wie die Pilze die spezialisierten Eintrittspunkte in die Wurzel finden, war bis anhin unbekannt. Die Forschungsgruppe von Prof. Enrico Martinoia der Universität Zürich hat nun in Zusammenarbeit mit der Gruppe von Prof. Harro Bouwmeester aus Wageningen, Niederlande, diese Fragen gelöst. «Mit der Modellpflanze Petunie konnten wir nachweisen, dass das Protein PhPDR1 Strigolaktone transportiert», erklärt Prof. Martinoia. Dieses Protein gehört zu der Familie der ABC-Transporter, die in einfachen Organismen wie Bakterien aber auch in Menschen vorkommt.

Die Forscher haben beobachtet, dass PhPDR1 bei tiefem Nährstoffgehalt höher exprimiert wird, um mehr symbiotische Pilze anzulocken, welche dann für eine höhere Nährstoffversorgung sorgen. Es gibt aber auch Pflanzen wie die Modellpflanze Arabidopsis (Acker-Schmalwand), die keine Mykorrhiza bilden. Fügten die Forscher jedoch PhPDR1 hinzu, transportierten die Arabidopsiswurzeln neu Strigolaktone.

Ertragsverbesserungen und Unkrautbekämpfung
«Unsere Resultate werden helfen, die Mykorrhizierung von Pflanzen in Böden, in denen die Mykorrhizierung gehemmt wird, zu verbessern», ist Prof. Martinoia überzeugt. «Die Mykorrhizierung kann so dort ausgelöst werden, wo sie wegen Trockenheit oder Überflutung der Böden gehemmt ist.» Dadurch würden die Pflanzen besser genährt und erzielten eine höhere Ernte. Zusätzlich kann dank der Entdeckung des Strigolakton-Transporters die Sekretion von Strigolakton in den Boden gestoppt werden. Dies verhindert, dass parasitische Pflanzen angelockt werden, welche die Ressourcen der Wirtspflanzen aufbrauchen. «Das ist vor allem für Regionen in Afrika bedeutend, wo das parasitäre Unkraut Striga und andere parasitische Pflanzen regelmässig über 60 Prozent der Ernten vernichten», so Martinoia.

Literatur:
Tobias Kretzschmar, Wouter Kohlen, Joelle Sasse, Lorenzo Borghi, Markus Schlegel, Julien B. Bachelier, Didier Reinhardt, Ralph Bours, Harro J. Bouwmeester and Enrico Martinoia. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature, doi:10.1038/nature10873.



More news from: University of Zurich


Website: http://www.uzh.ch/index.html

Published: March 8, 2012

The news item on this page is copyright by the organization where it originated
Fair use notice

 

 

 

 

 

 

 

 


Copyright @ 1992-2025 SeedQuest - All rights reserved