home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

Asexual propagation of crop plants gets closer
Asexuelle Vermehrung von Kulturpflanzen rückt näher


Zürich, Switzerland
February 15, 2024

When the female gametes in plants become fertilized, a signal from the sperm activates cell division, leading to the formation of new plant seeds. This activation can also be deliberately triggered without fertilization, as UZH researchers have shown. Their findings open up new avenues for the asexual propagation of crop plants.




Two varieties of the model plant thale cress: on the left a significantly larger hybrid variety, on the right the standard variety for laboratory research. (Image: Nicholas Desnoyer, UZH)

 

Seeds are the end product of plant reproduction. Whether directly as food, or indirectly as animal feed, they provide around 80 percent of human calorie consumption. In the millennia since humans first settled, we have bred countless plant varieties with advantageous characteristics, such as increased yields, improved quality, resistance to pests or hardiness. Where possible, farmers use hybrid varieties, which are created by crossing two inbred lines and are more resistant and higher-yielding than normal varieties. The problem is that these desired properties are lost during propagation and, therefore, hybrid seeds have to be recreated every year.

Sperm-derived signal activates cell division of the female gamete

If we could find a way to propagate crop plants by asexual reproduction through seeds – known as apomixis – it would revolutionize agriculture. If it were possible to bypass the reductional division and fertilization of female gametes, the seeds produced would be genetically identical to the mother plant. Plant varieties with desired characteristics could thus be propagated much more easily – as seed clones. Now, Ueli Grossniklaus and his team at the Department of Plant and Microbial Biology at the University of Zurich (UZH) have come a step closer to achieving this goal. “In the model plant thale cress, we have discovered the signal that activates the female gamete to form a new seed,” says Grossniklaus.

The fertilization process in plants consists of two events. Two sperm cells merge with one female gamete each – one sperm cell fertilizes the egg, from which the embryo and ultimately the next generation is formed, while the other one fuses with the central cell, which develops into a placenta-like tissue that supplies the embryo with nutrients. Together, they develop into mature seeds. For fertilization to be successful, sperm cells and female gametes must be in the same phase of the cell cycle – in other words, they need to be “in sync” with each other.


The targeted activation of cell division without fertilization opens up new possibilities for introducing apomixis into crop plants, especially in the more resilient and higher-yielding hybrid varieties.
Ueli Grossniklaus
Director Department of Plant and Microbial Biology, UZH (Image: Arturo Bolaños)

Synchronization precedes gamete division

Scientists already knew that the sperm cells in thale cress (Arabidopsis thaliana) are in the preparatory phase for cell division. Grossniklaus’ team has now shown that the quiescent egg cell is also in this phase. The central cell, on the other hand, remains stuck in the middle of the preceding phase, in which the genetic material gets duplicated. While sperm and egg cells are in the same cell cycle phase, the central cell must first complete DNA synthesis after fertilization before the first division can begin.

This interruption in the cell cycle is caused by a protein in the central cell that is not completely degraded and is thus still present. When the sperm fertilizes this gamete, it introduces the protein cyclin, which then activates the decomposition of the inhibitory protein. Only then can the central cell complete DNA synthesis and move into the next phase of the cell cycle. “For the first time, we have managed to figure out the molecular mechanism of how the signal is delivered from the sperm to the female gamete in order to shift it out of its quiescent state. It signals to the central cell that fertilization was successful and that cell division can now take place,” says first author Sara Simonini.



Seed structure with a large central cell in the center (cell nucleus in yellow) surrounded by the tissue of the mother plant (purple). The mature central cell (left) is in a quiescent state until fertilization reactivates the cell cycle and the cell nucleus divides (right) to form the nutritive tissue. (Image: Sara Simonini, UZH)

 

Asexual reproduction for crops

If thale cress were to be genetically modified such that the central cells produced the protein cyclin themselves, they would begin to divide even without fertilization. “We can now deliberately trigger this activation in the absence of fertilization. This opens up opportunities to introduce apomixis in crop plants, in particular in hybrid varieties that are more resilient and produce higher yields than normal varieties,” says Grossniklaus. If apoximis could be harnessed in crop plants, millions of small-scale farmers in the Global South would for the first time be able to grow hybrid varieties whose seeds could be saved for the next sowing.

Literature:
Sara Simonini, Stefano Bencivenga, and Ueli Grossniklaus. A paternal signal induces endosperm proliferation upon fertilization in Arabidopsis. Science. February 9, 2024. DOI: 10.1126/science.adj4996

 



Asexuelle Vermehrung von Kulturpflanzen rückt näher

Werden die weiblichen Keimzellen in Pflanzen befruchtet, aktiviert ein Signal aus den Spermien die Zellteilung und neue Pflanzensamen werden gebildet. Diese Aktivierung lässt sich auch ohne Befruchtung gezielt auslösen, wie UZH-Forschende zeigen. Dies eröffnet neue Wege für die asexuelle Vermehrung von Kulturpflanzen.

Samen sind das Endprodukt der pflanzlichen Vermehrung. Direkt als Nahrung oder indirekt als Futtermittel liefern sie rund 80 Prozent der Kalorien für die Menschheit. Seit der Mensch sesshaft geworden ist, hat er über die Jahrtausende zahllose Pflanzensorten gezüchtet mit vorteilhaften Eigenschaften wie gesteigerte Erträge, qualitative Verbesserungen, Resistenzen gegen Schädlinge oder Toleranzen gegenüber Umwelteinflüssen. Wann immer möglich nutzt die Landwirtschaft Hybridsorten, die durch Kreuzung zweier Inzuchtlinien entstehen und widerstandsfähiger und ertragreicher sind als normale Sorten. Problem ist, dass bei ihrer Vermehrung diese gewünschten Eigenschaften verloren gehen und sie deshalb von Jahr zu Jahr neu hergestellt werden müssen.

Signal vom Spermium aktiviert Zellteilung der Keimzelle
Würde es gelingen, Kulturpflanzen durch asexuelle Fortpflanzung – Apomixis genannt – zu vermehren, käme dies einer landwirtschaftlichen Revolution gleich. Denn wird die Befruchtung von weiblichen Keimzellen durch männliche Spermien umgangen, entstehen Samen, die genetisch identisch mit der Mutterpflanze sind. Pflanzensorten mit gewünschten Eigenschaften könnten so viel einfacher vermehrt werden – als Saatgut-Klone. Diesem Ziel ist Ueli Grossniklaus und sein Team am Institut für Pflanzen- und Mikrobiologie der Universität Zürich (UZH) nun ein grosses Stück nähergekommen. «Wir haben in der Modellpflanze Ackerschmalwand das Signal entdeckt, das bei der Befruchtung die weibliche Keimzelle aktiviert, um einen neuen Samen zu bilden», sagt Grossniklaus.

In Pflanzen finden jeweils zwei Befruchtungsprozesse statt: Zwei Spermien verschmelzen mit je einer weiblichen Keimzelle. Ein Spermium befruchtet die Eizelle, woraus sich der Embryo und schliesslich die nächste Generation bildet. Das zweite fusioniert mit der Zentralzelle, die sich zum Nährgewebe ausbildet, das den Embryo mit Nährstoffen versorgt. Zusammen entwickeln sie sich zum Samen. Damit die Befruchtung erfolgreich funktioniert, müssen Spermien und Keimzellen in der gleichen Phase des Zellzyklus sein – also quasi «synchronisiert» werden.


"Die gezielte Aktivierung der Zellteilung ohne Befruchtung eröffnet neue Möglichkeiten, um die Apomixis in Nutzpflanzen einzuführen, insbesondere bei den resilienteren und ertragreicheren Hybridsorten."
Ueli Grossniklaus

Direktor Institut für Pflanzen- und Mikrobiologie, UZH (Bild: Arturo Bolaños)
Synchronisierung kommt vor Teilung der Keimzellen
Bekannt war, dass sich die Spermien in der Ackerschmalwand (Arabidopsis thaliana) in der Vorbereitungsphase für die Zellteilung befinden. Wie das Team von Grossniklaus nun zeigt, befindet sich die Eizelle ebenfalls in diesem Ruhezustand. Die Zentralzelle hingegen bleibt mitten in der vorangehenden Phase stecken, in der die Erbsubstanz verdoppelt wird. Während sich Spermium und Eizelle in der gleichen Zellzyklus-Phase befinden, muss die Zentralzelle nach der Befruchtung zuerst die DNA-Synthese abschliessen, bevor die erste Teilung beginnen kann.

Verantwortlich für den Zellzyklusstopp ist ein Protein, das in der Zentralzelle nicht vollständig abgebaut, also noch vorhanden ist. Befruchtet das Spermium die Keimzelle, schleust es zugleich das Eiweiss Cyclin ein, das den Abbau des hemmenden Proteins aktiviert. Erst jetzt kann die Zentralzelle die DNA-Verdoppelung vervollständigen und in die nächste Zellzyklus-Phase übergehen. «Wir haben erstmals den molekularen Mechanismus entschlüsselt, wie das Signal vom Spermium zur weiblichen Keimzelle geliefert wird, um ihren Ruhezustand aufzuheben. Es signalisiert der Zentralzelle, dass die Befruchtung erfolgreich war und die Zellteilung nun erfolgen kann», sagt Erstautorin Sara Simonini.

Asexuelle Vermehrung für Kulturpflanzen nutzbar machen

Wurde die Ackerschmalwand genetisch so verändert, dass die Zentralzellen selbst das Eiweiss Cyclin herstellen, begannen sich die Keimzellen auch ohne Befruchtung zu teilen. «Wir können diese Aktivierung nun auch ohne Befruchtung gezielt auslösen. Dies eröffnet neue Möglichkeiten, um die Apomixis in Nutzpflanzen einzuführen, insbesondere bei Hybridsorten, die resilienter sind und höhere Erträge bringen als normale Sorten», so Ueli Grossniklaus. Könnte die Apomixis in solchen Kulturpflanzen nutzbar gemacht werden, hätten Millionen von Kleinbauern im Globalen Süden erstmals Zugang zu Hybridsamen, deren Saatgut sie für die nächste Aussaat aufbewahren könnten.

Literatur:
Sara Simonini, Stefano Bencivenga, and Ueli Grossniklaus. A paternal signal induces endosperm proliferation upon fertilization in Arabidopsis. Science. February 9, 2024. DOI: 10.1126/science.adj4996

 

 



More news from: University of Zurich


Website: http://www.uzh.ch/index.html

Published: February 15, 2024

The news item on this page is copyright by the organization where it originated
Fair use notice

 
 
 
 
 
 
 
 
 
 
 
 

  Archive of the news section

 

 


Copyright @ 1992-2025 SeedQuest - All rights reserved