home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

IPK researchers provide insights into grain number determination mechanism of barley
IPK-Forscher geben Einblick in den Mechanismus der Ertragsbildung bei Gerste


Gatersleben, Germany
March 3, 2023

Flowering plants with indeterminate inflorescences often produce more floral structures than they require. An international research team led by IPK Leibniz Institute found that floral primordia initiations in barley are molecularly decoupled from their maturation into grains. While initiation is dominated by flowering-time genes, floral growth is specified by light-signaling, chloroplast and vascular developmental programs orchestrated by barley CCT MOTIF FAMILY 4 (HvCMF4), which is expressed in the inflorescence vasculature. The findings which today have been published in the journal “Science Advances” provide insights into the molecular underpinnings of grain number determination in cereal crops.

Modifying inflorescences with higher grain capacity is vital for crop grain production. One recurring target is to select inflorescences with more branches or floral structures. Prominent examples include genes affecting floral identity or meristem determinacy, for which natural or induced variants profoundly change floral primordium number. Yet for temperate cereal crops, such as wheat and barley, excessive floral structures can result in a degeneration penalty due to the indeterminate nature of meristems. On the other hand, the manifestation of this reproductive potential can be accentuated by environmental fluctuations such as light, temperature and nutrition. Increasing the fraction of surviving
florets/spikelets may thus improve grain yield in cereals. 

Now, IPK reserachers unveiled a previously unrecognized mechanism by which signals in the vasculature of the barley inflorescence control plastid differentiation and nutrient signaling, thereby sustaining heterotrophic floral meristem growth and reproductive success. Their results prove that the circadian clock of the vasculature is required for a timely switch from the floral primordia initiation state to the growth state.

By conducting large scale floral meristem dissection and phenotyping, the researchers show that approximately 40% of the initiated floral primordia set grains while the rest are aborted, representing an untapped yield potential. “We further show that the number of initiated floral primordia is largely determined by flowering time genes, but the fates of the distal floral primordia are controlled by at least three independent quantitative trait loci”,
says Dr. Yongyu Huang, first author of the study. 

“We identifed for the first time a vascular-expressed CCT Motif Family gene (HvCMF4) that is required for spikelet primordia growth and successful pollination”, says Dr. Yongyu Huang. Moreover, the research team showed that HvCMF4 specifically functions after the initiation of spikelet primordia through the wiring of the circadian clock from the inflorescence vasculature to control greening of the neighboring tissue; and thus, autotrophic energy production. “This grain number determination mechanism has not been described before and appears to be unique to the Triticeae species, which features early inflorescence greening during spikelet initiation and differentiation.” 

“Our study evokes a new avenue for boosting grain yield, highlighting the possibility of increasing grain number not just by gaining more floral primordia but also by convoying them until maturity”, says Prof. Dr. Thorsten Schnurbusch, head of IPK’s research group “Plant Architecture” and Professor for Developmental Genetics of Crop Plants at Martin Luther University Halle. “As barley is amongst the most important cereal crops in the world (number four after rice, maize and wheat), better exploiting its grain yield potential can thus contribute to world food security and thereby directly help fight against hunger threats imposed by climate change, natural or war disasters.”

Original publication:
Huang et al. (2023): A molecular framework for grain number determination in barley.
Science Advances. DOI: 10.1126/sciadv.add0324
 

 


IPK-Forscher geben Einblick in den Mechanismus der Ertragsbildung bei Gerste

Blütenbildene Pflanzen mit nicht determinierten Blütenständen produzieren oft mehr Organe als sie benötigen. Ein internationales Forscherteam unter Leitung des IPK-Leibniz-Instituts hat nunmehr zeigen können, dass die ersten Schritte der Blütchenbildung bei Gerste molekular von ihrer Reifung zu Körnern entkoppelt sind. Während die Blütchenbildung von speziellen Genen diktiert wird, wird das Wachstum der Blütchen durch Lichtsignal-, Chloroplasten- und Gefäßentwicklungsprogramme gesteuert. Dabei spielt das Gerste CCT MOTIF FAMILY 4 (HvCMF4)-Protein eine zentrale Rolle. Die Ergebnisse geben Einblicke in die molekularen Grundlagen der Ertragsentwicklung bei Getreidepflanzen.

Die Veränderung von Blütenständen mit höherem Ertragspotenzial ist für die Getreideproduktion von entscheidender Bedeutung. Dabei geht es oft um die Auswahl von Blütenständen mit mehr Verzweigungen oder Blütenstrukturen. Prominente Beispiele dafür sind Gene, die die Blütenidentität oder die Meristemdeterminiertheit beeinflussen. Natürliche oder induzierte Varianten verändern dann die Anzahl der Blütenprimordien. Bei Getreidepflanzen der gemäßigten Zonen wie Weizen und Gerste führt ein Übermaß an Blütenstrukturen jedoch zur Degeneration von Blütchen. Zusätzlich kann die Ausprägung dieses Ertragspotenzials durch Umweltschwankungen wie Licht, Temperatur und Ernährung verändert werden. Eine Erhöhung des Anteils der überlebenden Blütchen/Ährchen kann daher den Kornertrag bei Getreide verbessern.

IPK-Forscher haben nun einen bisher unbekannten Mechanismus aufgedeckt, durch den Signale im Gefäßsystem des Gerstenblütenstandes die Plastidendifferenzierung und die Nährstoffsignalgebung steuern. Das beeinflusst maßgeblich das heterotrophe Wachstum des Blütchenmeristems und den Fortpflanzungserfolg. Die Ergebnisse belegen, dass die zirkadiane Uhr des Gefäßsystems für einen rechtzeitigen Wechsel vom Zustand der Blütchenprimordien-Initiation zum Wachstumszustand erforderlich ist.

Durch groß angelegte mikroskopische Untersuchungen des Blütchenmeristems zeigen die Forscher, dass etwa 40 Prozent der initiierten Blütchenmeristeme Körner bilden, während der Rest degeneriert. Damit bleiben große Teile des Ertragspotenzials ungenutzt. „Wir zeigen außerdem, dass die Anzahl der initiierten Blütchenprimordien weitgehend von Genen der Blühinduktion bestimmt wird, aber das spätere Schicksal insbesondere der distalen Blütchenprimordien von mindestens drei unabhängigen, anderen Merkmalsloci gesteuert wird“, sagt Dr. Yongyu Huang, Erstautor der Studie, die heute im Journal "Science Advances" veröffentlicht wurde.

„Wir haben zum ersten Mal ein Protein der CCT-Motif-Familie (HvCMF4) identifiziert, das für das Wachstum der Ährchenprimordien und die erfolgreiche Bestäubung erforderlich ist“, sagt Dr. Yongyu Huang. Darüber hinaus zeigte das Forscherteam, dass HvCMF4 nach dem Beginn des Wachstums der Ährchenprimordien mit Hilfe der zirkadianen Uhr vom Blütenstandsgefäßsystem aus funktioniert, um das Ergrünen des benachbarten Gewebes und damit die autotrophe Energieproduktion zu einzuleiten. „Dieser Mechanismus zur Regulierung des Ertragspotenzials und der Kornzahl wurde bisher noch nicht beschrieben und scheint einzigartig für die Triticeae-Arten zu sein, die sich durch ein frühes Ergrünen der unreifen Blütenstände während der Ährchenbildung und -differenzierung auszeichnen.“

„Unsere Studie zeigt einen neuen Weg zur Steigerung des Kornertrags auf, indem sie die Möglichkeit eröffnet, die Kornzahl nicht nur durch mehr Blütchenansätze zu erhöhen, sondern diese auch bis zur Reife zu begleiten“, sagt Prof. Dr. Thorsten Schnurbusch, Leiter der Arbeitsgruppe „Pflanzenarchitektur“ am IPK und Professor für Entwicklungsgenetik der Kulturpflanzen an der Martin-Luther Universität Halle. „Da Gerste zu den weltweit vier wichtigsten Getreidearten gehört (nach Reis, Mais und Weizen), kann eine bessere Ausschöpfung ihres Kornertragspotenzials einen Beitrag zur Welternährungssicherheit leisten und damit direkt zur Bekämpfung von Hungergefahren durch Klimawandel, Natur- oder Kriegskatastrophen beitragen.“

Originalpublikation:

Huang et al. (2023): A molecular framework for grain number determination in barley. Science Advances. DOI: 10.1126/sciadv.add0324



More news from: IPK Gatersleben - Leibniz Institute of Plant Genetics and Crop Plant Research


Website: http://www.ipk-gatersleben.de

Published: March 6, 2023

The news item on this page is copyright by the organization where it originated
Fair use notice

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Archive of the news section


Copyright @ 1992-2025 SeedQuest - All rights reserved