home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

Plants defend their territory with toxic substances
Pflanzen verteidigen ihr Revier mit Giftstoffen


Germany
November 5, 2015

Plants are stakeholders in a subtle and complex chemical warfare to secure optimal growth conditions. Although it has been known for decades that plants produce and release chemical substances to fight their neighbors, it has remained unclear how exactly these compounds act on other plants. A team of German and French scientists has been able to show that one particular class of plant toxins slows down the development of competing plants by specifically acting on the structure of their genome.


To have an advantage over their neighbors, some plant species release chemicals from their roots (e.g. DIBOA). These compounds can get degraded in the soil and turn into toxic substances. - Claude Becker, Sebastián Petersen (Max Planck Institute for Developmental Biology) and Markus Burkard (University Hospital Tübingen)


Plants are in a constant competition with their neighbors for limited resources such as light, nutrients and water. Only the fittest survive and reproduce. To defend their territory against invading competitors, plants employ so-called allelochemicals, toxic compounds that can inhibit growth and development of other plants. The existence of this chemical warfare, referred to as ‘allelopathy’, is widespread among many plant species, and has been known for a long time to scientists and agriculturists.

Plants are able to release chemical compounds from their roots into the soil, where the substances decay or are modified by microbes. Some of these products are toxic when the roots of neighboring plants take them up. Work by Sascha Venturelli and colleagues now sheds light on the inner workings of this plant chemical warfare (The Plant Cell). Claude Becker, one of the leaders of the study, explains the importance of the findings: “The phenomenon has been known for years, and many classes of allelochemicals have been identified over the last decades, but for first time we now understand the molecular mechanism of such a ‘territorial behaviour’ of plants”.

The scientists investigated the role a specific class of plant secondary metabolites, the cyclic hydroxamic acids DIBOA and DIMBOA. These are released by several grass species, and their degradation products are well known for their phytotoxicity. Through structural and biochemical analyses, followed by physiological experiments, Venturelli and colleagues could show that these compounds inhibit the activity of so-called histone deacetylases. These enzymes bind to histones, a group of proteins that together with DNA form the genetic material, also known as chromatin. Histone deacetylases remove acetyl side chains from these histones, causing compaction of the DNA and leading to a reduction in gene expression.

In the model plant Arabidopsis thaliana, the scientists found that inhibition of histone deacetylases by the plant toxins lead to more histone acetylation and an increase in gene expression, ultimately causing plant growth to slow down. The study thus not only presents the first molecular mechanism for allelopathy, but also illustrates how environmental toxins can alter chromatin structure and gene expression.

Allelochemicals are important regulators in natural and agricultural plant communities, and have repeatedly been associated with the success of invasive species in their new habitats. But there is more: “Herbal natural products in general hold great potential for the therapy of human diseases”, says Sascha Venturelli from the University Clinics Tübingen, medical scientist and first author of the study, and continues: “We have found that these particular compounds efficiently inhibit the growth of human cancer cells, too.” Indeed some inhibitors of histone deacetylases have already been approved as anti-cancer drugs. Michael Bitzer and Ulrich Lauer, initiators and co-advisors of the study explain on-going efforts: “Clinical trials at the University Clinics Tübingen currently assess the efficacy of these plant toxins in cancer patients”. Understanding the mode of action of plant toxins could therefore also be of wider significance for medical research.

Contributing authors and institutes:
Sascha Venturelli, Alexander Berger, Kyra von Horn, Ulrich M. Lauer and Michael Bitzer from the Department of Internal Medicine I, Medical University Clinic, University of Tübingen, Germany;
Regina G. Belz from the Institute of Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, Stuttgart, Germany;
Andreas Kämper, André Wegner and Oliver Kohlbacher from the Applied Bioinformatics Group, University of Tübingen, Tübingen, Germany;
Alexander Böcker from the Evotec AG, Hamburg, Germany;
Gérald Zabulon and Fredy Barneche from the Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, Paris, France;
Tobias Langenecker, Detlef Weigel and Claude Becker from the Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany

Source:
Venturelli et al.
Plants release precursors of histone deacetylase inhibitor to suppress growth of competitors
Advance Publication, The Plant Cell, November 2015 tpc.15.00585


Pflanzen verteidigen ihr Revier mit Giftstoffen

Pflanzliche Kriegsführung ist subtil und höchst komplex. Mit Hilfe eigens produzierter chemischer Stoffe versuchen Pflanzen, sich ihren Platz an der Sonne zu sichern und gegen Nachbarn zu verteidigen. Wie diese Chemikalien wirken, ist bisher wenig erforscht. Ein internationales Forscherteam, darunter Wissenschaftler vom Max-Planck-Institut für Entwicklungsbiologie in Tübingen, haben jetzt gezeigt, dass einige Stoffe beim Kampf gegen Nachbarpflanzen gezielt Eingriffe in die Struktur des Erbguts konkurrierender Pflanzen vermitteln und so deren Wachstum stoppen.


Manche Pflanzen greifen ihre Nachbarn an, um sich Wachstumsvorteile zu verschaffen. Dazu geben sie über ihre Wurzeln chemische Stoffe ab, z.B. DIBOA, die im Boden umgewandelt werden können.
Claude Becker, Sebastián Petersen (Max-Planck-Institut für Entwicklungsbiologie) und Markus Burkard (Uniklinikum Tübingen)

Für Pflanzen bestimmen limitierte Ressourcen den täglichen Kampf um Licht, Wasser und Nährstoffe. Nur wer sich im Wettbewerb behaupten kann, überlebt und produziert Nachkommen. Damit jedoch nicht genug, denn der Gewinner muss das eroberte „Revier“ auch vor anderen Konkurrenten verteidigen. Die bewegungslosen Pflanzen nutzen dafür Allelochemikalien, chemische Stoffe, die Wachstum und Entwicklung anderer Pflanzen hemmen. Das Prinzip dieser sogenannten Allelopathie ist schon lange bekannt und ein weit verbreiteter Mechanismus zur Unterdrückung von Konkurrenten.

Oftmals werden die Stoffe von den Pflanzen über Wurzelsäfte ins Erdreich abgegeben, zerfallen dort zu Abbauprodukten oder werden von Mikroben chemisch verändert. Nachbarpflanzen nehmen dann diese veränderten Stoffe passiv mit dem Wasser aus der Erde auf und werden in ihrem Wachstum gehemmt. Eine ganze Reihe solcher Allelochemikalien wurde bereits identifiziert. Nicht bekannt war bisher allerdings, wie sie in den Zellen der Zielpflanze wirken. Die Arbeit von Sascha Venturelli und seiner Kollegen bringt jetzt Licht in die pflanzliche Kriegsführung. „Obwohl das Phänomen schon seit Jahrzehnten bekannt ist, konnten wir jetzt zum ersten Mal einen molekularen Mechanismus für dieses chemische „Territorialverhalten“ von Pflanzen zeigen“, erklärt Claude Becker vom Max-Planck-Institut für Entwicklungs¬biologie, einer der Leiter der Studie.

Die Forscher beschäftigten sich mit einer bestimmten Klasse von Allelochemikalien, den zyklischen Hydroxaminsäuren DIBOA und DIMBOA, die zum Beispiel von einigen Gräsern über die Wurzel abgegeben werden und deren Abbauprodukte bekannt sind für ihre hohe Giftigkeit für Nachbarpflanzen. Mittels biochemischer und struktureller Analysen, gefolgt von physiologischen Versuchen, zeigten Venturelli und Kollegen, dass die Stoffe grundlegende Zellprozesse direkt beeinflussen, indem sie die Aktivität von Zielgenen verändern. Dafür hemmen die pflanzlichen Toxine die Aktivität sogenannter Histon-Deacetylasen. Diese Enzyme binden an Histone, welche zusammen mit der DNA die Erbsubstanz bilden, und entfernen Acetyl-Seitenketten. Dies führt zu einer Verdichtung der DNA, was eine geringere Gen-Aktivität zur Folge hat.

In der Modellpflanze Arabidopsis thaliana führte die Hemmung der Histon-Deacetylasen durch die pflanzlichen Toxine indirekt zu erhöhter Histon-Acetylierung, dadurch zu einer verstärkten Genexpression, und schließlich zur Beeinträchtigung des Wachstums. Damit zeigt die Studie nicht nur einen ersten molekularen Mechanismus für die Aktivität allelopathischer Stoffe, sondern veranschaulicht auch, wie Genexpression direkt durch umweltverursachte Chromatin-Veränderungen beeinflusst werden kann.

Allelochemikalien sind nicht nur für natürliche und landwirtschaftliche Pflanzengemeinschaften relevant, auch bei der Kolonisierung neuer Habitate durch invasive Pflanzenarten spielen sie vermutlich eine entscheidende Rolle. Und nicht nur das: „Naturstoffe allgemein haben eine große Bedeutung, insbesondere in der Therapie menschlicher Erkrankungen“, so Sascha Venturelli vom Universitätsklinikum Tübingen, Erstautor der Studie und einer der beteiligten Mediziner. “Die von uns untersuchten Substanzen“, erläutert er, „zeigen eine starke krebshemmende Wirkung, die derzeit weiter im Detail erforscht wird“. Erste Wirkstoffe, die Histon-Deacetylasen hemmen, sind bereits als Krebsmedikamente zugelassen. „Deshalb wird diese Wirkstoffklasse aktuell auch am Universitätsklinikum Tübingen im Rahmen klinischer Studien auf ihre Wirksamkeit bei Krebspatienten untersucht“ bestätigen die Mediziner Ulrich Lauer und Michael Bitzer, die das Projekt initiiert und mitbetreut haben. Somit ist die Aufklärung der Wirkweise von Naturstoffen auch für die medizinische Forschung von großer Bedeutung.

Beteiligte Forscher und Institute:
Sascha Venturelli, Alexander Berger, Kyra von Horn, Ulrich M. Lauer und Michael Bitzer von der Abteilung für Innere Medizin I, Medizinische Universitätsklinik, Universität Tübingen;
Regina G. Belz vom Institut für Planzenproduktion und Agrarökologie in den Tropen und Subtropen, Universität Hohenheim, Stuttgart;
Andreas Kämper, André Wegner und Oliver Kohlbacher, Forschungsgruppe Angewandte Bioinformatik, Universität Tübingen;
Alexander Böcker von der Evotec AG, Hamburg;
Gérald Zabulon und Fredy Barneche vom Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, Paris, Frankreich;
Tobias Langenecker, Detlef Weigel und Claude Becker von der Abteilung für Molekularbiologie, Max Planck Institut für Entwicklungsbiologie, Tübingen

Quelle:
Venturelli et al.
Plants release precursors of histone deacetylase inhibitor to suppress growth of competitors
Advance Publication, The Plant Cell, November 2015 tpc.15.00585



More news from: Max Planck Institute for Developmental Biology


Website: http://www.eb.tuebingen.mpg.de/

Published: November 6, 2015

The news item on this page is copyright by the organization where it originated
Fair use notice


Copyright @ 1992-2024 SeedQuest - All rights reserved