home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

Collaborative roots could reduce reliance on phosphorus fertilisers


Dundee, Scotland, United Kingdom
May 6, 2014


Cereal and clover mixture field (c) James Hutton Institute.

Farmers could improve the efficiency of phosphorus in crop production by coupling plants with complementary traits, which would allow them to harness the ‘phosphorus bank’ already present in soils.

Exploring the potential of ‘collaborative roots’ to make organic phosphorus available to plants is the objective of a new £1.2 million, three-year project undertaken by a scientific consortium including the James Hutton Institute, Rothamsted Research and led by Lancaster University.
Phosphorus is a non-renewable resource, essential for crop and food production. Due to inefficient use and limited global reserves, inorganic phosphorus fertilisers will become less economically viable and there are concerns about future supplies. Without action, this situation could undermine agricultural productivity.

A large proportion of phosphorus already present in soils is found in organic forms, which are generally unavailable to plants for two reasons: firstly organic phosphorus is often tightly bound to soil surfaces, and secondly, it must be transformed into inorganic compounds before it can be taken up by plants.

Dr Tim George, rhizosphere scientist at the James Hutton Institute and lead investigator on the project, said: “Some plants help mobilise organic phosphorus in soils by producing organic acids from their roots, whilst others exude enzymes that mineralise this phosphorus into forms available to plants.

“We are investigating bi-cropping systems that combine plants with these individual traits to determine if such systems can improve the utilisation of organic phosphorus and help transform organic phosphorus into a viable, sustainable nutrient source for agricultural production.

“Outputs from the project will have impact for many individuals involved in crop production from agricultural research scientists, fertiliser suppliers, crop breeders and land managers through to policy makers.

Professor Phil Haygarth of Lancaster University said: “By increasing the amount of phosphorus utilised from the ‘phosphorus bank’ stored in soils we can reduce the reliance on inorganic fertilisers, increasing agricultural sustainability and improving our ability to deliver food security in coming decades.

“It is exciting to be starting this collaborative project with such a strong team, we have potential to make a real difference to the future of food production.”

The results of the study could influence the way in which cropping systems are considered in the future both nationally and internationally, by providing fundamental science to support crop development, based on more than just yield and productivity, but also on the specific soil/plant processes involved.

The James Hutton Institute is a world-leading, multi-site scientific organisation encompassing a distinctive range of integrated strengths in land, crop, waters, environmental and socio-economic science. It undertakes research for customers including the Scottish and UK Governments, the EU and other organisations worldwide. The institute has a staff of nearly 600 and 125 PhD students, and takes its name from the 18th century Scottish Enlightenment scientist, James Hutton, who is widely regarded as the founder of modern geology and who was also an experimental farmer and agronomist.

We are the longest running agricultural research station in the world, providing cutting-edge science and innovation for nearly 170 years. Our mission is to deliver the knowledge and new practices to increase crop productivity and quality and to develop environmentally sustainable solutions for food and energy production.
Our strength lies in the integrated, multidisciplinary approach to research in plant, insect and soil science.
Rothamsted Research receives strategic funding from the Biotechnology and Biological Sciences Research Council (BBSRC) of £27.2M per annum.

 



More news from:
    . James Hutton Institute
    . Rothamsted Research
    . Lancaster University


Website: http://www.hutton.ac.uk

Published: May 6, 2014

The news item on this page is copyright by the organization where it originated
Fair use notice

 

 

 

 

 

 

 

 

 

 

 


Copyright @ 1992-2024 SeedQuest - All rights reserved