home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

1001 Genom-Projekt - On the way to a complete catalog of the Arabidopsis genome
1001 Genom-Projekt – auf dem Weg zum kompletten Erbgut-Katalog von Arabidopsis


Germany
August 28, 2011

Thanks to its flexible genome the plant can adapt to various environmental conditions
Tübingen, Germany. August 28, 2011. People can develop new technologies and animals may migrate to other regions. However, plants are tied to their location. Nevertheless, they have found ways to ensure their survival. This is the case for the plant Arabidopsis thaliana, which is found throughout the entire northern hemisphere. But how does this small, inconspicuous plant deal with all these different extremes? In order to discover the whole-genome sequence variation, the 1001 Genomes Project was launched in 2008, with eleven research institutes participating worldwide. By investigating the genetic material of about one hundred strains of this plant from different geographical regions, researchers found a huge number of variations: in addition to millions of small differences that lead to a diversity of molecular gene products, they found hundreds of genes that are missing in some strains or have extra copies in others. It is probably this great flexibility within the genetic material that makes this plant particularly adaptable. In the medium term the complete catalog of the genome and gene product variation of a species can be applied to modern plant breeding.

Verschiedene Mutanten von Arabidopsis thaliana.
Different mutants of Arabidopsis thaliana. Picture: Detlef Weigel / Max Planck Institute for Developmental Biology

Which genes and gene variants allow different individuals of one species to thrive under very different environmental conditions? The model plant for genetics, the thale cress, Arabidopsis thaliana, is especially well suited for the investigation of this question. It can deal with heat and drought in northern Africa as well as with cold in the central Asian highlands and temperate zones in Europe. Depending on the region it may display extensive foliage or appear small and fragile, yet it is always the same species. The answer lies without doubt in the diversity of its genetic material. Detlef Weigel and Karsten Borgwardt from the Max Planck Institute for Developmental Biology, Gunnar Rätsch from the Friedrich Miescher Laboratory in Tübingen, and Karl Schmid of the University of Hohenheim have, together with an international team, sequenced and analyzed the genome of different Arabidopsis strains from all over Europe and Asia. To reveal the effect of geographic distance on the genes they selected plants from strains growing locally – in the Swabian Neckar Valley - as well as plants growing at opposite ends of the plant’s distribution area, such as North Africa or Central Asia.

Verbreitungskarte der Arabidopsis thaliana. Orange markiet sind die Orte an welchem für diese Studien Arabidopis Pflanzen entnommen wurden.
Regional distribution map of the Arabidopsis thaliana. Strains were collected from various european and asian regions. Picture: Jun Cao / Max Planck Institute for Developmental Biology

By sequencing nearly 100 genomes of different strains, the scientists hope to obtain a fundamental scientific understanding of evolution. The resulting information should pave the way for a new era of genetics in which alleles underpinning phenotypic diversity across the entire genome and the entire species can be identified. The scientists have found that thousands of proteins differ in their structure and function in the different Arabidopsis strains. In addition, they found several thousand cases of extra copies of genes, gene loss, as well as new genes that were previously only found in other plant species. "Our results show very impressively just how pronounced the genetic variability is," says Jun Cao from the Max Planck Institute for Developmental Biology and first author of one of the projects. Karl Schmid of the University of Hohenheim adds: "Adaptation through new mutations is very rare. More important is the recombination of already existing variants. With the information from more than a hundred genomes, not only can we make statements about these hundred individuals, but have thus laid the foundations to predict the genetic potential which could be realized by crossing particular individuals." The geneticists working with Detlef Weigel, Karsten Borgwardt and Karl Schmid also found that the level of genetic variation differs widely between different regions. The researchers found the greatest genetic diversity in the Iberian Peninsula, where the plants have existed for a very long time. In Central Asia, which was only colonized after the last ice age, the Arabidopsis plants have relatively uniform genomes. Moreover, these populations have an above-average number of mutations that cause disadvantages for the plant, since protein functions are changed. Normally, natural selection removes these mutations over time, but in young emigrant populations they are enriched through cases of random evolution. "Figuring out how the plants and their genomes adapt to their environment is like a puzzle," says Jun Cao. "We need to collect all the pieces, before we can fit them together." The scientists have managed to create a nearly complete catalog of the genome variation of a species.

But how do these variations interact at the molecular level and what changes do they cause in the gene products? The computational biologist Gunnar Rätsch from the Friedrich Miescher Laboratory examined these questions in detail in a second study together with his international colleagues. They analyzed 19 strains of Arabidopsis with a particularly large genetic variability. These 19 individuals formed the basis of an artificial population of several hundred strains, created through multiple crosses such that different genome segments were shuffled systematically. The resulting individuals are ideally suited for examining gene interactions. The scientists studied the genome segments using novel analysis methods of analysis and discovered in detail how DNA is read in detail and how the intermediate stage of protein production, the RNA, is produced. The researchers obtained detailed insight into the altered gene products arising from the various genomic variants. Depending on the genomic context some gene segments were either shut down or reactivated. "We can find a surprising number of changes affecting a single gene. However, they are often compensated for and therefore often have no significant effect on the gene products," says Gunnar Rätsch about the new results. The concepts, methods and platforms developed based on the genomic variation of Arabidopsis thaliana can also be used to study crop plants and for fast and accurate mapping of desirable characteristics. In addition, researchers can transfer this understanding about the influence of variation on gene products and their interactions to studies of the human genome.

These new projects should be viewed in the context of the 1001 Genomes Project, which was launched in 2008 at the Max Planck Institute for Developmental Biology and is being implemented through many individual projects in cooperation with ten other institutions worldwide. The aim is to analyze and compare the genes of 1001 different Arabidopsis strains. The goal of this large-scale project is to obtain fundamental insights into evolution, genetics and molecular mechanisms. Almost 500 different genomes have already been sequenced and analyzed at the different institutions. The data is being fed into a public database, which can be accessed not only by participants of the projects, but by all interested scientists.

More information about the projects:
- 1001 Genomes Project
- 19 Genomes of Arabidopsis thaliana

Original publications:

Cao, J., Schneeberger, K., Ossowski, S., Günther, T., Bender, S., Fitz, J., Koenig, D., Lanz, C., Stegle, O., Lippert, C., Wang, X., Ott, F., Müller, J., Alonso-Blanco, C., Borgwardt, K., Schmid, K. J., and Weigel, D. (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetics, doi: 10.1038/ng.911

Gan X., Stegle O., Behr J., Steffen J.G., Drewe P., Hildebrand K.L., Lyngsoe R., Schultheiss S.J., Osborne E.J., Sreedharan V.T., Kahles A., Bohnert R., Jean G., Derwent P., Kersey P., Belfield E.J., Harberd N.P., Kemen E., Toomajian C., Kover P.X., Clark R.M., Rätsch G., Mott R. (2011) Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature, doi: 10.1038/nature10414.

Schneeberger, K., Ossowski, S., Ott, F., Klein, J. D., Wang, X., Lanz, C., Smith, L. M., Cao, J., Fitz, J., Warthmann, N., Henz, S. R., Huson, D. H., and Weigel, D. (2011) Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proceedings of the National Academy of Sciences of USA 108, 10249-10254, doi: 10.1073/pnas.1107739108.


1001 Genom-Projekt – auf dem Weg zum kompletten Erbgut-Katalog von Arabidopsis

Dank ihres flexiblen Erbguts kann sich die Pflanze an unterschiedlichste Umweltbedingungen anpassen

Menschen können neue Technologien entwickeln und Tiere in andere Regionen abwandern, Pflanzen aber sind an ihren Standort gebunden. Dennoch haben sie Möglichkeiten gefunden, ihr Überleben zu sichern. So auch die Ackerschmalwand, die auf der gesamten Nordhalbkugel zu finden ist. Wie schafft es diese kleine, unscheinbare Pflanze mit unterschiedlichen Extrembedingungen fertig zu werden? Um das herauszufinden, wurde 2008 das 1001 Genom-Projekt ins Leben gerufen, an dem sich weltweit elf Forschungsinstitute beteiligen. Bei der Untersuchung des Erbguts von etwa hundert Stämmen dieser Pflanze aus verschiedenen Regionen sind Tübinger und Hohenheimer Forscher auf eine immense Zahl von Variationen gestoßen: Neben Millionen kleiner Unterschiede, die zu molekular variierenden Genprodukten führen, fanden sie Hunderte von Genen, die in manchen Stämmen fehlen oder in anderen zusätzlich vorkommen. Es ist vermutlich diese große Flexibilität des Erbmaterials, das diese Pflanzen besonders anpassungsfähig macht. Der komplette Katalog der Genom- und Genproduktvariationen einer Art kann mittelfristig Anwendung in der modernen Pflanzenzüchtung finden.

Welche Gene und Genvarianten erlauben es Individuen ein und derselben Art, unter ganz unterschiedlichen Umweltbedingungen zu gedeihen? Die Modellpflanze der Genetik, die Ackerschmalwand, Arabidopsis thaliana, eignet sich besonders gut für die Untersuchung dieser Frage. Sie kommt mit der Hitze und Trockenheit im Norden Afrikas ebenso gut zurecht wie mit der Kälte im zentralasiatischen Hochland oder den gemäßigten Zonen in Europa. Mal ist es eine großblättrige Pflanze, mal ist sie klein und zierlich, doch immer ist es die gleiche Art. Die Antwort liegt ohne Zweifel in der Vielfalt des Erbguts. Forscher um Detlef Weigel und Karsten Borgwardt vom Max-Planck-Institut für Entwicklungsbiologie, Gunnar Rätsch vom Friedrich-Miescher-Laboratorium in Tübingen sowie Karl Schmid von der Universität Hohenheim haben jetzt zusammen mit einem internationalen Team das Genom von verschiedenen Ackerschmalwand-Stämmen aus ganz Europa und Asien sequenziert. Um die Auswirkung von geographischen Entfernungen auf die Gene zu enthüllen, wählten sie zum einen Individuen aus, die ganz in der Nähe wachsen – beispielsweise im schwäbischen Neckartal – sowie Pflanzen, die an entgegengesetzten Enden des Verbreitungsgebiets vorkommen, wie Nordafrika oder Zentralasien.

Durch die nahezu vollständige Aufklärung von 100 Genomen dieser einen Pflanzenart sollen grundlegende Erkenntnisse über die Evolution gewonnen werden – die Forscher sehen darin den Aufbruch in eine neue Ära der Genetik. Tausende von Proteinen unterscheiden sich in Form und Aktivität in den verschiedenen Arabidopsis-Stämmen. Darüber hinaus fanden die Wissenschaftler mehrere Tausend Fälle von zusätzlichen Genkopien und Genverlusten, aber auch neue Gene, die bisher nur in anderen Pflanzenarten zu finden waren. „Aus unseren Ergebnissen wurde eindrucksvoll deutlich, wie ausgeprägt die genetische Variabilität ist“, sagt Jun Cao vom Max-Planck-Institut für Entwicklungsbiologie und Erstautor einer der Studien. Karl Schmid von der Universität Hohenheim setzt hinzu: „Die Anpassung durch neu entstandene Mutationen ist sehr selten. Viel wichtiger ist die Neukombination bereits vorhandener Varianten. Mit der Information von über hundert Genomen können wir nicht nur Aussagen über diese hundert Individuen treffen, sondern haben damit auch den Grundstein gelegt, um vorherzusagen, welches genetische Potenzial durch Kreuzungen verschiedener Individuen geweckt werden kann.“

Die Genetiker um Detlef Weigel, Karsten Borgwardt und Karl Schmid fanden auch heraus, dass sich die Anzahl der genetischen Variationen in den einzelnen Regionen des Verbreitungsgebiets stark unterscheidet. Die größte genetische Vielfalt fanden die Forscher auf der Iberischen Halbinsel, wo die Art schon sehr lange vorkommt. In Zentralasien, das erst nach der letzten Eiszeit besiedelt wurde, haben die Arabidopsis-Pflanzen vergleichsweise einheitliche Genome. Diese enthalten zudem überdurchschnittlich viele Mutationen, die mit Nachteilen für die Pflanze verbunden sind, weil sie etwa die Funktion von Proteinen verändern. Normalerweise entfernt die natürliche Selektion diese Mutationen im Lauf der Zeit, aber in jungen Auswandererpopulationen sind sie durch zufällige Evolution angereichtert. Herauszufinden wie Pflanzen und ihre Genome sich an ihre Umgebung anpassen, ist wie ein Puzzle zusammenzusetzen“, erklärt Jun Cao. „Wir müssen alle Stücke sammeln, bevor wir sie aneinanderfügen können.“ Die Wissenschaftler haben es geschafft, einen nahezu kompletten Katalog der Genomvariationen einer Art zu erstellen.

Zusammenspiel der Gene

Wie jedoch diese Variationen auf molekularer Ebene zusammenwirken und zu welchen Veränderungen sie in Genprodukten führen, wurde detailliert vom Bioinformatiker Gunnar Rätsch am Friedrich-Miescher-Laboratorium und internationalen Kollegen in einer zweiten Studie untersucht. Sie analysierten 19 Arabidopsis-Stämme mit besonders großer genetischer Variabilität. Diese 19 Individuen bildeten den Grundstock für eine künstliche Population von mehreren Hundert Stämmen, die durch mehrfache Kreuzungen entstanden ist. Dabei werden systematisch verschiedene Genomstücke zusammengewürfelt. In den entstandenen Individuen lässt sich das Zusammenspiel der Gene besonders gut untersuchen.

Die Wissenschaftler haben diese Genomstücke mithilfe neuartiger Analysemethoden untersucht und herausgefunden, wie die DNA im Einzelnen abgelesen und in die Zwischenstufe der Proteinherstellung, die RNA, umgesetzt wird. Dabei fielen ihnen Genabschnitte auf, die abhängig vom genomischen Kontext stillgelegt oder reaktiviert wurden. „Im einzelnen Gen finden in kurzer Zeit überraschend viele Veränderungen statt. Sie werden aber häufig insgesamt wieder kompensiert, so dass zunächst von außen nahezu keine Auswirkungen zu erkennen sind“, fasst Gunnar Rätsch die neuen Ergebnisse zusammen. Die Konzepte, Methoden und Plattformen, die auf Basis der Genomvariationen von Arabidopsis entwickelt werden, können auch verwendet werden, um Nutzpflanzen zu erforschen und einer schnellen, exakten Zuordnung und Kartierung von wünschenswerten Eigenschaften in Pflanzen dienen. Darüber hinaus können Forscher die Erkenntnisse über den Einfluss von Variationen auf die Genprodukte und ihr Zusammenwirken auch auf Untersuchungen am menschlichen Genom übertragen.

Die neuen Arbeiten sind auch im Rahmen des 1001 Genom-Projekt zu sehen. Das Projekt wurde 2008 vom Max-Planck-Institut für Entwicklungsbiologie ins Leben gerufen und wird in Kooperation mit zehn weiteren Instituten weltweit in vielen Einzelprojekten umgesetzt. Ziel ist die Analyse und der Vergleich der Gene von 1001 verschiedenen Arabidopsis-Stämmen. In dem Großprojekt sollen grundlegende Erkenntnisse über die Evolution, über die Genetik und über molekulare Mechanismen gewonnen werden. Fast 500 Genome wurden an den unterschiedlichen Instituten bereits sequenziert und analysiert. Die Daten werden in eine öffentliche Datenbank eingespeist und können so nicht nur den Kooperationspartnern, sondern allen interessierten Wissenschaftlern als Quelle dienen.

Weitere Informationen zu den Projekten:
http://www.1001genomes.org/
http://mus.well.ox.ac.uk/19genomes/

Originalpublikationen:
Cao, J., Schneeberger, K., Ossowski, S., Günther, T., Bender, S., Fitz, J., Koenig, D., Lanz, C., Stegle, O., Lippert, C., Wang, X., Ott, F., Müller, J., Alonso-Blanco, C., Borgwardt, K., Schmid, K. J., and Weigel, D. (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetics, doi: 10.1038/ng.911

Gan X., Stegle O., Behr J., Steffen J.G., Drewe P., Hildebrand K.L., Lyngsoe R., Schultheiss S.J., Osborne E.J., Sreedharan V.T., Kahles A., Bohnert R., Jean G., Derwent P., Kersey P., Belfield E.J., Harberd N.P., Kemen E., Toomajian C., Kover P.X., Clark R.M., Rätsch G., Mott R. (2011) Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature, doi: 10.1038/nature10414.

Schneeberger, K., Ossowski, S., Ott, F., Klein, J. D., Wang, X., Lanz, C., Smith, L. M., Cao, J., Fitz, J., Warthmann, N., Henz, S. R., Huson, D. H., and Weigel, D. (2011) Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proceedings of the National Academy of Sciences of USA 108, 10249-10254, doi: 10.1073/pnas.1107739108.



More news from: Max Planck Institute for Developmental Biology


Website: http://www.eb.tuebingen.mpg.de/

Published: September 2, 2011

The news item on this page is copyright by the organization where it originated
Fair use notice

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Archive of the news section


Copyright @ 1992-2024 SeedQuest - All rights reserved