Urbana, Illinois, USA
August 27, 2020
Representing some of the most troublesome agricultural weeds, waterhemp, smooth pigweed, and Palmer amaranth impact crop production systems across the U.S. and elsewhere with ripple effects felt by economies worldwide. In a landmark study, scientists have published the most comprehensive genome information to date for all three species, marking a new era of scientific discovery toward potential solutions.
“These genome assemblies will greatly foster further research on these difficult weed species, including better understanding the ways in which they evade damage from herbicides,” says Pat Tranel, professor and associate head of the Department of Crop Sciences at the University of Illinois and co-author on the Genome Biology and Evolution study.
Draft genomes had already been published for waterhemp and Palmer amaranth, but techniques used in the Genome Biology and Evolution study provide a much clearer and richer picture of the species’ gene sequences, a requisite for many genomic studies.
All three genomes were assembled using advanced long-read sequencing, which maintains the integrity and continuity of the genome similar to the way large puzzle pieces provide a clearer picture of the whole than small pieces. In Palmer amaranth, an additional sequencing technology (chromatin conformation capture sequencing) was used to further order pieces of the genome that were assembled using the long-read information.
“The goal of any genome assembly is to reveal the complete arrangement of genes in the genome, broken into chromosome-sized fragments. Unfortunately, until recently, quality genome assemblies have been very labor intensive and expensive. The previously published draft genomes for these species reported the genome broken into thousands of pieces, while the assemblies we report are down to hundreds. The vast majority of the sequence is now assembled into very large fragments,” says Jacob Montgomery, a graduate student working with Tranel and first author on the study.
To further improve the assembly of the genomes for waterhemp and smooth pigweed, the team used an innovative approach known as trio binning, developed in cattle. Not only had this technique never before been fully utilized in plants, it had also not been used with parents from different species.
In normal reproduction, male and female parents each contribute one copy of every gene to their offspring. In this case, offspring are diploid, meaning they have two copies of every gene. In the study, the team created hybrid offspring from two separate species: waterhemp and smooth pigweed. These offspring are still diploid, but the trio binning technique allowed the researchers to pull apart and isolate the two copies from each parent species, resulting in haploid (single copy) genomes for each.
“This approach resolved a problem in the previous waterhemp genome assembly. When parent alleles (copies of each gene) are very different from each other, as is often the case in outcrossing species such as waterhemp, the genome assembly program interprets them to be different genes,” Tranel says. “With only one allele from each species, we were able to obtain a much cleaner assembly of their gene sequences.”
Detlef Weigel, director of the Max Planck Institute for Developmental Biology and co-author on the study, adds, “I am a big fan of the new advanced sequencing techniques, but even though they should theoretically be sufficient to sort out the arrangement of genes, in practice they are not. This is where genetics can help out, using information on whether genes were inherited from mom or dad. This allowed us to assign each gene to either a maternal or paternal chromosome.”
The researchers specifically chose waterhemp as the male parent in the smooth pigweed × waterhemp cross because the previously published waterhemp genome was from a female plant. Tranel is pursuing research to understand the genetic basis for maleness and femaleness in waterhemp and Palmer amaranth, with potential applications toward introducing female sterility as a future control method.
“The genomes of the male waterhemp and Palmer amaranth already have enabled my group to make rapid progress on identifying the potential genes that could be responsible for the determination of sex (male or female) in both species,” Tranel says.
Importantly, the genomes for all three species could start to chip away at the problem of herbicide resistance in these weeds. More and more, scientists are uncovering evidence of non-target-site or metabolic resistance in waterhemp and Palmer amaranth, allowing the weeds to detoxify herbicides before they can cause damage. Unfortunately, it is usually very difficult to determine which specific enzyme, among hundreds, is responsible for detoxifying the herbicide.
Now, researchers will essentially be able to sort through a list to find the culprit with the hope of either knocking out the enzyme responsible or modifying the herbicide molecule to evade detoxification.
“Innovation is essential for the future of agriculture. We at BASF are working continuously on improving our products and services including sustainable solutions for the management of herbicide-resistant weeds. We want to better understand the amaranth biochemical resistance mechanisms in order to offer farmers new products and solutions for optimal control of key weeds,” says Jens Lerchl, head of early biology research on herbicides Jens Lerchl head of early biology research on herbicides at BASF and study co-author. Lerchl coordinated the Palmer amaranth genome work with KeyGene/Wageningen -The Netherlands.
“The area of genome sequencing is highly dynamic. That is why BASF chose KeyGene as the partner for both latest sequencing technology and bioinformatics. Together with the expertise of the University of Illinois and Max Planck Society, we were able to compare genomes and address specific biological topics,” Lerchl says. In addition to collaborating on this research, BASF is also a founding member of the International Weed Genomics Consortium (https://www.weedgenomics.org/), led by Colorado State University aiming at the sequencing and analysis of ten high priority key weeds.
Co-authors from KeyGene endorse the societal relevance of the results and of the public availability of the data. “In plant sciences, studying weed genetics is important for sustainability of future agriculture. Our results will hopefully stimulate scientists around the globe to start, continue, and boost research on the genetics of important weeds that currently reduce yields, increase costs, and cause environmental burden,” says Antoine Janssen, genome informatics expert at KeyGene.
The article, “Draft genomes of Amaranthus tuberculatus, Amaranthus hybridus, and Amaranthus palmeri,” is published in Genome Biology and Evolution [DOI: 10.1093/gbe/evaa177]. The research was supported by USDA’s National Institute of Food and Agriculture, the International Max Planck Research School, and the Max Planck Society.
The Department of Crop Sciences is in the College of Agricultural, Consumer and Environmental Sciences at the University of Illinois.
Genome zentraler landwirtschaftlicher Unkräuter identifiziert
Grünähriger Fuchsschwanz - Credit: Steve Bowe
Basis für ökologisch nachhaltigere Landwirtschaft gelegt
Sie gehören zu den problematischsten landwirtschaftlichen Unkräutern mit erheblichen volkswirtschaftlichen Folgen in der Agrarproduktion weltweit: Palmer Amaranth sowie der Warzenfrüchtige und der Grünährige Fuchsschwanz. Wissenschaftler der Universität Illinois und des Max-Planck-Instituts für Entwicklungsbiologie in Tübingen haben nun die bisher umfassendsten Genominformationen für alle drei Arten dieser Unkräuter veröffentlicht. Sie läuten damit eine neue Ära gezielter und ökologisch nachhaltiger Anwendungen für die Landwirtschaft ein.
"Die von uns nun vorgelegten Erkenntnisse zum Erbgut schädlicher Unkräuter werden die weitere Forschung in diesem Gebiet deutlich beschleunigen und intensivieren. Zudem ermöglichen die Daten, ein besseres Verständnis zu entwickeln, wie Schädlinge eine Resistenz gegenüber Herbiziden entwickeln können", sagt Pat Tranel, Professor und stellvertretender Leiter der Abteilung für Nutzpflanzenwissenschaften an der University of Illinois und Co-Autor der Studie.
Vollständiges Abbild aller Erbinformationen mittels Long-Read-Sequenzierung
Erste Kartierungen der Erbinformationen von den eng verwandten Arten des Palmer Amaranth und Grünährigem Fuchsschwanz waren zwar bereits bekannt. Die in dieser Studie verwendeten Technologien ermöglichen jedoch deutlich detailliertere Informationen aller Gensequenzen dieser Arten, eine zentrale Grundlage auch für zukünftige Genomstudien.
Die Erbinformationen aller drei Unkräuter wurden mit Hilfe der modernen Long-Read-Sequenzierung kartiert. Vergleichbar mit der Art und Weise, wie Puzzleteile ein klareres Bild des Ganzen liefern, ermöglicht diese Technologie eine im Vergleich zu früheren Maßnahmen sehr schnelle Sequenzierung von Erbinformationen. Auch unerforschte Genombereiche können nun so zügig identifiziert werden.
Im Falle der Analysen zu Palmer Amaranth wurde eine weitere Methode, die Chromatin-Conformation-Capture-Sequenzierung, verwendet, um Teile des Genoms, die in einem vorhergehenden Arbeitsschritt mit der Long-Read-Methode bereits zusammengesetzt wurden, weiter zu ordnen.
"Das Ziel jeder Zusammenstellung von Genominformationen ist es, die vollständige Anordnung aller Gene im Genom zu klären. Leider waren komplexe Genomzusammenstellungen bis vor kurzem sehr arbeitsintensiv und teuer. In den zuvor veröffentlichten Vorschlägen für diese Arten wurde das Genom in tausende kleiner Teile zerlegt, während die von uns ermittelten Bausteine auf wenige hundert reduziert werden konnten. Die überwiegende Mehrheit der vollständigen Erbinformation besteht nun aus sehr großen Fragmenten", erläutert Jacob Montgomery, Erstautor und Doktorand von Tranel.
Trio-Binning-Methode zur Einordnung von Erbinformationen aus der Elterngeneration
Um die Assemblierung der Genome für den Warzenfrüchtigen und den Grünährigen Fuchsschwanz weiter zu verbessern, verwendete das Team einen innovativen Ansatz, der als Trio-Binning aus der Rinderzucht bekannt ist. Diese Technik war bisher so nie vollständig bei Pflanzen eingesetzt und auch noch nicht an unterschiedlichen Arten angewandt worden.
Bei der normalen Fortpflanzung tragen männliche und weibliche Elterngenerationen jeweils eine Kopie jedes Gens zum Erbgut ihrer Nachkommen bei. Die Nachkommen sind diploid, das heißt, ihre Zellkerne beinhalten zwei Kopien von jedem Gen ihrer Eltern. In der Studie schuf das Forscherteam hingegen hybride Nachkommen aus einer Kreuzung. Ihre Nachkommen sind noch immer diploid, aber die Trio-Binning-Technik erlaubte es den Forschern, diese beiden Kopien von jeder Elternart zu trennen und zu isolieren, was zu sog. haploiden Genomen mit nur einem einfachen Chromosomensatz für jede Art führte.
"Dieser Ansatz löste ein Problem in der früheren Fuchsschwanz-Genom-Assemblierung. Wenn sich die Elternallele (die Kopien eines jeden Gens) sehr stark voneinander unterscheiden, wie es bei der Auskreuzung von Arten wie Wasserhanf oft der Fall ist, interpretiert das Genomassemblierungsprogramm sie als unterschiedliche Gene", erklärt Tranel. "Mit nur einem Allel von jeder Art konnten wir eine erheblich sauberere Assemblierung ihrer Gensequenzen erzielen", so der Forscher.
Detlef Weigel, Geschäftsführender Direktor des Max-Planck-Instituts für Entwicklungsbiologie und Mitautor der Studie, erläutert: "Ich bin ein großer Fan der neuen Sequenzierungstechniken, doch können sie in der Praxis nicht immer eindeutig die Erbinformationen den beiden Eltern zuordnen. Hier kann die Genetik helfen, indem sie Erkenntnisse darüber erhält, ob Gene von der Mutter oder vom Vater vererbt wurden. So konnten wir jedes Gen eindeutig einem mütterlichen oder einem väterlichen Chromosom zuordnen".
Rückverfolgung von Erbinformationen ermöglicht besseres Verständnis über Unkrautresistenzen
Die Forscher wählten speziell den Warzenfrüchtigen Fuchsschwanz als männlichen Elternteil in der Kreuzung mit dem Grünährigen Fuchsschwanz, um so besser die weitergegebenen Erbinformationen aus beiden Geschlechtern zurückverfolgen zu können. Tranel forscht nun hieran weiter, um die genetische Basis für Männlichkeit und Weiblichkeit bei Warzenfrüchtigem Fuchsschwanz und Palmer Amaranth zu erkennen - mit möglichen Anwendungen wie der Einkreuzung weiblicher Sterilität.
"Die Genome des männlichen Warzenfrüchtigen Fuchsschwanz und Palmer Amaranth haben meiner Gruppe bereits rasche Fortschritte bei Geschlechterbestimmung ermöglicht", sagt Tranel. Zentral bleibt, dass die Genominformationen aller drei Unkrautarten es nun ermöglichen könnten, Herausforderungen der Herbizidresistenz zu lösen. Immer mehr Wissenschaftler entdeckten verschiedentlich auftretende Resistenzen.
"Wir wollen die biochemischen Resistenzmechanismen der Fuchsschwanzarten besser verstehen, um den Landwirten neue Lösungen für eine optimale Kontrolle der wichtigsten Unkräuter anzubieten", sagt Jens Lerchl, Leiter der frühen biologischen Forschung zu Herbiziden bei der BASF und Mitautor der Studie. Lerchl koordinierte die Zusammenarbeit von BASF mit KeyGene/Wageningen in den Niederlanden. "In den Biowissenschaften ist die Unkrautgenetik wichtig für die Nachhaltigkeit unserer zukünftigen Landwirtschaft. Unsere Ergebnisse werden hoffentlich Wissenschaftler auf der ganzen Welt dazu anregen, die Forschung hierzu fortzusetzen und zu fördern", sagt Antoine Janssen, Genominformatik-Experte bei KeyGene.
Das Forschungsprojekt wurde vom National Institute of Food and Agriculture des USDA, der International Max Planck Research School und der Max-Planck-Gesellschaft unterstützt.
Die Abteilung für Nutzpflanzenwissenschaften befindet sich im College of Agricultural, Consumer and Environmental Sciences an der University of Illinois.
Originalpublikation:
Genome Biology and Evolution [DOI: 10.1093/gbe/evaa177]