home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
Market Page

Market data
Market data sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
 

Modeling the future for soybeans in the Midwestern U.S.


Urbana, Illinois, USA
February 2, 2017

soybean field

How will the rising temperatures expected to occur with global climate change affect soybean growth in the Midwest? Rather than wait and see, researchers at the University of Illinois will use real crop data and computer modeling to better predict future impacts of higher temperatures on agricultural production and identify promising targets for adaptation.

The project is being funded with a $420,000 USDA National Institute for Food and Agriculture grant. U of I environmental scientist Kaiyu Guan is the project director. Carl Bernacchi and Elizabeth Ainsworth are co-project directors. Both are plant physiologists in the U of I Department of Plant Biology and Department of Crop Sciences.

The project will look at how temperature affects major plant processes such as photosynthesis and respiration.

“Higher temperatures in the future may result in accelerated crop growth rate and shorter growing seasons,” says Guan. “There will likely be direct heat stress effects on the various stages in plant reproduction, including number of flowers and pods produced and aborted and the higher temps may increase the plants’ demand for water. All of these factors will play a role in soybean crop yield.”

Guan says the team will combine the temperature free-air controlled enhancement (T-FACE) experiment and a newly developed crop modeling framework (CLM-APSIM).  Infrared heating arrays will be used to heat three soybean varieties, representing the major groups planted across the Midwest for two growing seasons, and multiple physiological and biochemical measurements will be taken simultaneously.

“We will then use the experiment results to improve and calibrate the model at the site level,” Guan says. “Using the calibrated model, we will attribute the historical yield loss due to increase temperature to different physiological mechanisms. Ultimately, we will project crop yield for the whole Corn Belt under the various climate scenarios, and quantify the contribution of each mechanism.”

In addition to being an assistant professor in ecohydrology and geoinformatics in the Department of Natural Resources and Environmental Sciences in the College of Agricultural, Consumer and Environmental Sciences at U of I, Guan has a joint appointment as a Blue Waters professor affiliated with the National Center for Supercomputing Applications (NCSA). 



More news from: University of Illinois


Website: http://www.uiuc.edu

Published: February 2, 2017

 
 

Better Food Venture's
AgTech Landscape 2019

 

 

2019 THRIVE Top 50
landscape map

 

Concentration in Seed Markets - Potential Effects and Policy Responses

(OECD December 2018)
 

Visualizing Consolidation
in the Global Seed Industry
1996–2018

Seed Industry Structure
1996-2018

Phil Howard
Associate Professor
Michigan State University


 

2017 Seed Company Family Tree
Ccreated Septebmer 2017
by Robert Walsh
WaSoo Farm, Elk Point, South Dakota

Syngenta Brands Family Tree
Ccreated January 2017 by Robert Walsh, WaSoo Farm, Elk Point, South Dakota

 
Rabobank's
World Vegetable Map 2018

 

 


Archive of the MARKETS section

 

 

 


Copyright @ 1992-2025 SeedQuest - All rights reserved